

Characterising current system

- It's complicated !
- Mass heat (energy) transfer
 - In the soil

PLANT HEALTH SOLUTIONS

- In the insulation layer
- Between surface and atmosphere
- Need to understand different heat transfer methods
 radiation, conduction, convection, latent heat
- · Principles well understood for soil/plant/air
- Lot of info. / theory of insulation from buildings
- Very little info. for layers of straw !

It's complicated !

- More complex and dynamic than first imagined
- Lots of over-simplification...
- Soil

- below about 1 m v. little temp variation
- net energy gain in the day/summer, net loss at night/winter
- soil type and soil moisture affect k (conductivity) and D (diffusivity) values
- conductivity: sand > clay > peat; moist > dry
- ground is a big reservoir of heat energy (cf. ground source heat pumps)
 to stop surface temperature dropping/freezing at night/cold days....
 - to stop surface temperature dropping/freezing at night/cold days
 need to transfer heat upwards at the same rate as being lost ...
 - and/or reduce heat loss with a layer of insulation....

Material	k-value W/mK	Current system is very inefficient Dut it works I (Mothy 2)
Still air	0.024	- but it works ! (Mostly !)
Water (0°C) 0.563	- might be a good thing ?!
Water (20°	C) 0.596	k-values are variable
Snow	0.05 to 0.25	 open surface layer → more heat loss, affected by wind spee
Ice	~2	$-$ moist/wet \rightarrow conduction, latent heat
Sand (dry)	0.29	- low density \rightarrow continuum of air space
Sand (40%) 2.2	ion denory · continuant of all opage
Peat (dry)	0.06	
Rockwool i	nsulation 0.04	
Straw bale	75 kg/m3 0.052	
Low k = good insulator <u>Still</u> air is a very good ins Many insulation materials - air pockets must be small - must be no continuous	sulator s work by trapping pockets of still air: all to prevent convection ; is case (cf. forst processing);	ATTIVITTIVITTI

Straw alternatives

- Based on comparison of insulation values
- Using realistic k-values for straw
- Compare systems using U-value (low = good)
- Ideal requirements:
 - equivalent/better insulation than current systems
 - no more expensive than current system
 - bio-degradable or re-useable
 - similar or lower transport costs (lower bulk)
 - can be laid as quickly, with similar labour to current
- Ideal insulation would give a continuous cover with no gaps (thermal bridges)
 - but where would the water go?

PLANT HEALTH SOLUTIONS

Reduced straw

System	Bales	Depth	Densit	Moist	k	R1	R2	U	£/m2	
Dry straw	90	15.5	28.6	0	0.22	0.70		1.42	0.31	
Dry + Poly	90	15.5	28.6	0	0.22	0.70	0.15	1.17	0.36	
Moist straw	90	15.5	28.6	286	0.31	0.51		1.97	0.31	
Moist + Poly	90	15.5	28.6	286	0.31	0.51	0.15	1.52	0.36	
Poly top + straw	29	5	28.6	0	0.065	0.77	0.15	1.09	0.15	
Foil + straw	29	5	28.6	0	0.065	0.77	0.34	0.90	?	

Poly on top of straw clear benefit

- maximises insulation value of straw
- potentially only 1/3rd amount of straw needed
- challenge is to keep poly in place

PLANT HEALTH SOLUTIONS

System	Depth	Dens	Moist	k	R1	R2	Ri	Re	U	£/m	
Moist straw 9) 15.5	28.6	286	0.31	0.507				1.97	0.31	
SF19	3.8				2.21		0.11	0.033	0.42	5.00	
TLX Gold (breathable)					0.95		0.11	0.033	0.91	1.5?	*
poly-Rockwool-poly	5			0.044	1.14	0.15	0.11	0.033	0.70	2.00	*
2 layers Vattex + poly	0.8	94		0.037	0.22	0.15	0.11	0.033	1.96	2.40	
1 layers Vattex +poly	0.4	94		0.037	0.11	0.15	0.11	0.033	2.49	1.20	
Closed cell PE foam	0.75			0.037	0.20		0.11	0.033	2.89	1.46	•
Closed cell PE foam	2			0.037	0.54		0.11	0.033	1.46	3.68	*
Warmcell poly sandwich	4	40	0	0.044	0.91	0.15	0.11	0.033	0.83	1.10	*
poly-PAS100 GW	5	400		0.06	0.83	0.15			1.02	0.07	200 t/ha
Starch peanuts poly sandw	i 5			0.04	1.25	0.15	0.11	0.033	0.65	1.72	
Foil/Bubble	0.4				0.12		0.11	0.033	3.75	1.49	
Poly alone	0	0	0	0	0.00	0.15			6.67	0.05	
 All except closed 	cell PE	need to	be dry								
 Nearly all are mu 	ch more	expens	ive than	current							
 Need to be re-us 	ed sever	al times	to be c	ost effec	tive						

Field trials

- Two winters: 2015-16 and 2016-17
- Validate theoretical calculated U-values etc.
- Six treatments each year
- Three locations:
- Aberdeenshire (Scotland), Yorkshire, Norfolk
- Two harvest dates
 - end January, early May
- Data
 - Temperature sensors at up 6 depths (0 to 60 cm) in each plot at each location
 Calculate the heat loss or heat gain each hour and then the relative insulation LI-values
- Large plots to avoid 'edge' effects
- 6 to 8 beds x 10 m

Field trials 2016-17

Site	Covered	Harvest 1	Harvest 2		
Norfolk	26/10/16	25/01/17	27/04/17		
Aberdeenshire	08/11/16	24/01/17	03/05/17		
Yorkshire	26/10/16	25/01/17	26/04/17		

U-values

- U-values are used to compare the insulation value of a 'system'
- Watts per sq. metre per degree, W/m²/K
- Lower value \rightarrow better insulation
- Used the hourly temperature and moisture values at each depth in the soil to calculate the heat loss/gain in each layer of soil for each hour, divide by 3600 (seconds in an hour), divide by the temperature difference between the soil surface and the air temp.
- Separate calculations:
 - $\ -\$ Heat loss when air temperature is lower than soil temperature
 - Heat gain when air temperature is higher than soil temperature

Uncovered

- Included as a negative control
- High levels of frost damage
 50 to 90%
- Significant reduction in marketable yield

PLANT HEALTH SOLUTIONS

- Inefficient in pure insulation terms
- Bottom layer of straw becomes very wet (~8 kg/m²)
- thermal mass effect
 latent heat of fusion (w)
- latent heat of fusion (water in the straw must freeze before the soil / carrots)

PLANT HEALTH SOLUTIONS

Straw over poly

- Inefficient in pure insulation terms
- Polythene adds insulation – equivalent to 3-5 cm of dry straw
- Polythene keeps bottom layer of straw wetter (~14 kg/m²)
- greater thermal mass effect = less fluctuation

PLANT HEALTH SOLUTIONS

- more latent heat of fusion (water in the straw must freeze before the soil / carrots)
- more evaporative cooling = less regrowth in the spring

Poly over reduced straw 1/3rd amount of straw

- Top layer of polythene traps air
- Equivalent insulation to standard straw
- No evaporative cooling in the spring
- An option if straw is in short supply

PLANT HEALTH SOLUTIONS

Closed cell PE foam

- 7.5 mm closed cell polyethylene foam
- Very efficient insulation
- Not affected by moisture
- Expensive but re-usable
- Need to re-use for several years to be cost effective

 need somewhere to store
- Need to develop system for anchoring in the field
- Allows light through

PLANT HEALTH SOLUTIONS

Cellulose fibre

- Applied at rate of 17.5 t/ha
- depth ~5cm
 Forms a crust on the surface
- Can absorb a lot of water (up to 600%)
- thermal mass effect
- latent heat of fusion (top 1-2 cm freezes protecting the crop underneath)
- Very clean crowns at harvest

 relatively sterile
- draws moisture away from carrot
- Less nitrogen lock-up
- No polythene waste
- Commercial development in progress....

Poly over cellulose fibre

- Aim to keep the fibre dry and maximise insulation value
- Outgoing U-value worse than fibre alone
- lower moisture

PLANT HEALTH SOLUTIONS

- less thermal mass
 No performance benefit
- compared to fibre only
- More cost than fibre only

Conclusions

- All treatments were effective
- no significant differences in marketable yield between cover treatments
 Conventional straw treatment inefficient as an insulator
- Straw use can be reduced by 2/3rds by covering with polythene
- Much of the frost protection with straw results from freezing of water in the bottom layer of straw
- Polythene below straw means the straw stays wetter, providing a bigger dampening effect and more evaporative cooling in spring
- Cellulose fibre and similar products could be viable nonstraw alternatives
 - less nitrogen lock-up, very clean crown

PLANT HEALTH SOLUTIONS

Acknowledgements

- Tim Lacey who got the work started at VCS
- AHDB Horticulture and BCGA for financial support
- Rodger Hobson, the grower representative, for useful discussions and insights
- The three growers providing us with trial sites: – Hobsons
 - TBG
 - AA Carrots
- The team at VCS for all their help and support: - James Howell, Luis Gladden, George, Dave

Thank you for listening

Any questions?

Steve Roberts E: s.roberts@planthealth.co.uk W: www.planthealth.co.uk Twitter: @planthealth

Links to more info: https://planthealth.co.uk/publications