Bacterial diseases

Steven Roberts
Plant Health Solutions Ltd – www.planthealth.co.uk
John Elphinstone
Fera Science Ltd – www.fera.co.uk

AHDB Review

- ~110 bacterial pathogens (pathogen = distinct species/sub-species/pathovar)
- ~35 considered to be non-indigenous (quarantine pathogens)
- Top priority bacterial diseases:

Outline

- AHDB Review of bacterial diseases
- Example of effective control

Onion storage rots

- Onions
 - Burkholderia gladioli pv. alliiola
 - Bacterial rot, mushy rot, slippery skin
 - More prevalent in crops grown from sets
 - Losses of up to 60% in individual crops
 - Average losses 4% → £4.4 million p.a.

AHDB Review

- List of bacterial pathogens known to affect or could potentially affect UK crops.
- Industry consultation to identify priority pathogens/diseases.
- Review control options for priority pathosystems.
- Summarise AHDB bacterial disease control trials.
- 115 page report
- Link:

Spear rot

- Broccoli
 - Pseudomonas fluorescens
 - Gp IV BSP strains
 - Spear rot
 - Losses of up to 100% in individual crops
 - Average losses 10% → £3.7 million p.a.
Bacterial canker
Prunus spp. (both fruit and ornamental production)
Pseudomonas syringae pv. *morganianum*
Pseudomonas syringae pv. *syringae*
Bacterial canker, shot-hole, leaf spot, shoot blight, flower blight
Losses in TF 30% → £5.6 million p.a.

Bacterial blotch
Mushrooms
Pseudomonas tolaasii
Also *P. gingerti* and other related strains
Brown blotch, ginger blotch
Losses of 5 to 10% → £10 to £20 million p.a.

Tomato root mat
Tomato and cucumber
Rhizobium radiobacter bv. 1 (strains carrying pRi plasmid)
Root mat
Rootwool, hydroponic growing systems...

Bacterial disease management
- Control often seen as difficult
 - mainly due to lack of chemicals
- The only effective PPP in the last 30 yrs has been copper oxychloride
 - must be used preventatively
- Potentially some highly effective chemicals and natural products could be used to control bacterial plant diseases...
 - BUT

Potato blackleg
Potato
Pectobacterium atrosepticum (and related bacteria)
Blackleg and solfrot

Bacterial disease management
- Control often seen as difficult
 - mainly due to lack of chemicals
- The only effective PPP in the last 30 yrs has been copper oxychloride
 - must be used preventatively
- Potentially some highly effective chemicals and natural products could be used to control bacterial plant diseases...
 - BUT
- They are called antibiotics !
 - Generally reserved for humans and animals
 - Where they have been used → resistance
Bacterial disease management
- The most effective strategy to control most bacterial plant diseases:

Disease avoidance

Black rot
- *Xanthomonas campestris pv campestris* (Xcc)
- V-shaped chlorotic, yellow lesions with blackened veins
- Systemic infection - stunted or dead plants
- Premature defoliation, secondary soft rots

Disease avoidance
- **What do we mean?**
- Biosecurity – prevention is better than cure
- Quarantine at national level
 - exclude, restrict entry of potential host plant material
 - testing, indexing, certification
- Quarantine at farm level
 - use of clean (= pathogen-free) propagation material (i.e. seed, tubers, cuttings)
 - testing, indexing, certification

Black rot
- Historically was not considered to be of great concern in the UK:
 - Too cold!
 - *Xanthomonas* considered to be favoured by warmer climates
- Early 1990s:
 - increasing reports of disease outbreaks especially in Autumn/Winter crops
 - 100% infection
 - significant losses
- Why? What changed?

Disease avoidance
- **To be effective:**
 - need to understand the epidemiology
 - primary sources of infection
 - define the health standards for testing/certification
 - consistent application of standards

Black rot – Why?
- New varieties?
 - more susceptible?
- New pathogen strains?
 - more aggressive?
 - better adapted to cooler temperatures?
- Warmer climate?
 - but why an issue in Autumn/Winter crops?
- Known to be seed borne
 - most seed companies were testing the seed

(c) 2018 Plant Health Solutions Ltd
Black rot
- Seed testing
 - some seed not tested
 - variation in method details from lab to lab
 - affects analytical sensitivity
 - variation in numbers of seeds tested
 - affects effective tolerance standard
- HDC-funded testing of seed (1996-97):
 - 24% of commercial lots were positive
 - including previously-tested seed
 - but at low levels

Black rot epidemiology
- MAFF-funded work:
 - Can the 100% infection levels seen in field crops arise from the low levels of seed infection detected in commercial seed lots?
- Data needed:
 - Transmission from seed to seedling
 - Rate of spread during plant raising
 - Rate of spread in the field

Spread in transplants
- Symptoms, single primary infector, ~ 4,500 plants

Spread in transplants
- Symptoms only half the story!

Spread in transplants
- Overhead tray irrigation:
 - From one infested seed to nearly 4,500 contaminated seedlings in 6 weeks
 - Final level 58%
 - Limit of experiment
Putting it all together

- What are the risks?
 - Transmission model:
 \[P = 1 - \exp[-n.d] \]
 - Spread model:
 \[\ln[p/(1-p)] = \ln(\alpha) + b_x \ln[c_x + \sqrt{c_x^2 + y^2}] + a_x t \]
 - Seed test model:
 \[p_x = p_x \times [1 - (1 - \theta)n] \]

- Conclusion
 - Low levels of seed infection can lead to 100% inf. in the field

Implications for seed health

- Modelling indicates testing 60,000 seeds (i.e. tolerance standard of 0.005%) will keep average levels <10% for transplanted crops?
- Omitting centrifugation gives a greater risk of unacceptable tests
- Biggest risk of detection failures:
 - low numbers of pathogen are spread over relatively larger numbers of infested seeds

Black rot 2017

- No longer reported as an issue by growers
- Why?
 - Improved understanding of epidemiology
 - acceptance by seed industry and plant raisers
 - Standardised seed test media/methods
 - ISTA and ISHI protocols
 - More stringent and consistent application of tolerance standards
 - Improved physical treatments
 - with more stringent re-testing

Conclusions

- Best strategy for control: disease avoidance
- Requires:
 - understanding of epidemiology
 - defined health standards
 - implementation of the health standards

Black rot – what changed?

- Centralised, intensive production of millions of transplants
- Seed test methods and standards not sufficiently stringent
- Rapid spread of pathogen on transplants raised during summer (rapid multiplication plus frequent irrigation)
- Transplants nearly all contaminated/infected at planting

Acknowledgements

- Funders:
 - AHDB, MAFF
- Collaborators/workers:
 - Josie Brough
 - Paul Hunter
 - Lea Hiltunen
 - Barbara Everett
 - Hort. Services staff at Warwick HRI
The End

Thank you for listening

E: s.roberts@planthealth.co.uk
W: www.planthealth.co.uk
Twitter: @planthealth
Handout: www.planthealth.co.uk/downloads